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A comparative study of structural variant calling in WGS
from Alzheimer’s disease families
John S Malamon1,*, John J Farrell2,*, Li Charlie Xia3,4, Beth A Dombroski1 , Rueben G Das1 , Jessica Way6,
Amanda B Kuzma1, Otto Valladares1, Yuk Yee Leung1, Allison J Scanlon1, Irving Antonio Barrera Lopez1, Jack Brehony1,
Kim C Worley7 , Nancy R Zhang4, Li-San Wang1, Lindsay A Farrer2,8,9 , Gerard D Schellenberg1 , Wan-Ping Lee1,*,
Badri N Vardarajan5,*

Detecting structural variants (SVs) in whole-genome sequencing
poses significant challenges. We present a protocol for variant
calling, merging, genotyping, sensitivity analysis, and laboratory
validation for generating a high-quality SV call set in whole-
genome sequencing from the Alzheimer’s Disease Sequencing
Project comprising 578 individuals from 111 families. Employing two
complementary pipelines, Scalpel and Parliament, for SV/indel
calling, we assessed sensitivity through sample replicates (N =
9) with in silico variant spike-ins. We developed a novel metric,
D-score, to evaluate caller specificity for deletions. The accuracy of
deletions was evaluated by Sanger sequencing. We generated a
high-quality call set of 152,301 deletions of diverse sizes. Sanger
sequencing validated 114 of 146 detected deletions (78.1%). Scalpel
excelled in accuracy for deletions ≤100 bp, whereas Parliament was
optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by
Scalpel and Parliament were validated, respectively, including all
11 deletions called by both Parliament and Scalpel between 101
and 900 bp. Our flexible protocol successfully generated a high-
quality deletion call set and a truth set of Sanger sequencing–
validated deletions with precise breakpoints spanning 1–17,000 bp.
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Introduction

Human genetic variation includes single nucleotide variants (SNVs),
small insertions and deletions (indels) less than 50 bp, and structural
variants (SVs) greater than 50 bp. SVs can result from deletions,
duplications, insertions, and rearrangements that include balanced
inversions and translocations or unbalanced repeats, duplications,

and deletions resulting in copy-number variation (CNV) (Iafrate et al,
2004; Sebat et al, 2004; Tuzun et al, 2005). SV/indels arise as both
single and complex events via germline and somaticmutations (Feuk
et al, 2006) and contribute significantly to genetic diversity and to
disease susceptibility (Juyal et al, 1996; Ji et al, 2000; Lin et al, 2000;
Lupski & Stankiewicz, 2005; Weischenfeldt et al, 2013; Østern et al,
2013; Carvalho & Lupski, 2016).

A variety of SV/indel types and sizes can be detected using high-
throughput short-read whole-genome sequencing (WGS). Multiple
large-scale SV detection studies have been performed such as
the 1000 Genomes Project (Sudmant et al, 2015), the Cancer
Genome Atlas Project (Cancer Genome Atlas Research et al, 2013;
Fredriksson et al, 2014), Genome of the Netherlands (Genome of
the Netherlands Consortium, 2014), the UK 10K Project (UK10K
Consortium et al, 2015), gnomAD (Collins et al, 2020), and CCDG
(Abel et al, 2020). However, SV/indel calling using short-read se-
quence data continues to be challenging. Multiple algorithms and
programs (e.g., Breakdancer, CNVnator, DELLY, Genome Analysis
Toolkit [GATK: 3.2] Haplotype Caller, Lumpy, Pindel, Scalpel, and
SWAN) (Chen et al, 2009; Ye et al, 2009; McKenna et al, 2010; Abyzov
et al, 2011; Rausch et al, 2012; Layer et al, 2014; Narzisi et al, 2014; Xia
et al, 2016) are available, but many factors continue to hinder
accurate and comprehensive identification of SV/indels in se-
quence data. These confounding factors include complex sequence
structure, variability in read depth and coverage across the ge-
nome, sequencing bias and artifacts, biological contamination, and
mapping and alignment errors or artifacts. Also, computational
demands can limit the use of some SV/indel calling programs.
Furthermore, SV/indel calling in large samples lacks standards for
calling procedures, call set merging, and quality control (QC). These
challenges become even more daunting when merging SV/indel
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calls from samples sequenced at multiple centers that use different
sequencing library designs and protocols. The quality and char-
acteristics of sequence data may vary considerably among samples
within and across centers and can affect SV/indel calling sensitivity
and specificity (Guo et al, 2014). We present results from analyses of
WGS data generated by the Alzheimer’s Disease Sequencing Project
(ADSP) for 578 members of 111 families. We focused on deletions
because deletion detection is more reliable than other SV types. In
addition, we spiked in structural variants in existing sequences for
benchmarking and evaluating the performance of several of these
tools and pipelines. Spiking in known structural variants allows for
a systematic evaluation of a tool’s sensitivity and specificity. Spiking
in variants of different sizes and complexities allowed us to
benchmark tools across a spectrum of genomic alterations, pro-
viding a more comprehensive evaluation. In addition, it also fa-
cilitated the evaluation of a tool’s ability to distinguish true variants
from background noise.

Our work showed that no single caller can accurately detect a
broad range of deletion sizes. We developed two systematic ap-
proaches for evaluating the sensitivity and specificity of different
callers and deletions identified from data generated by different
platforms and sequencing centers. Finally, we validated a com-
prehensive strategy for calling, merging, QC, and genotyping de-
letions that had high sensitivity and minimized false-positive calls.

Results

We generated deletion calls for the ADSP discovery phase WGS
using eight different programs (GATK Haplotype Caller, Scalpel,

Breakdancer, CNVnator, Lumpy, Pindel, Swan, and DELLY) (Methods:
Deletion variant calling protocol, Fig 1). These programs use dif-
ferent sequence features and analyze different event sizes (Tables
1, 2, and S1). To determine the properties of the data generated by
each program, we systematically evaluated sensitivity and speci-
ficity. Because the sequence data were generated at three different
Large-Scale Sequencing and Analysis Center (LSAC) sites using li-
braries with different characteristics (Methods: Subjects and
generation of WGS data), we evaluated data from each site. We
also benchmarked the computational resources needed for each
program.

Sensitivity analysis

Sensitivity was evaluated by inserting deletions and insertions into
WGS data generated at each LSAC (Methods: Sensitivity analysis
using simulated spike-in data). Sensitivity for detecting the inserted
deletions varied among callers and, to a lesser extent, the source of
the sequence data, and was dependent on the size of the deletion
(Fig 2). For short deletions (30–500 bp), Scalpel showed the best
sensitivity (~85%) and was closely followed by Pindel. Pindel
showed good sensitivity up to 1,000 bp. GATK Haplotype Caller
showed a sensitivity of ~75% for events up to 100 bp but fell off
rapidly above this size range. For larger events, Lumpy and SWAN
both showed good performance up to 5,000 bp. DELLY showed
reasonable sensitivity in the 500- to 5,000-bp range, but when
compared to other programs, its results were more influenced by
the source of the data. For example, DELLY had lower sensitivity
when calling genomes sequenced by BCM in the 200- to 500-bp bin
as compared to those from WashU and BI. Overall, SWAN was the

Figure 1. Overview of Alzheimer’s Disease
Sequencing Project’s SV/indel calling and
analysis pipeline.
Two parallel pipelines, Scalpel + GenomeSTRiP
(orange) and Parliament (green), were
combined to perform SV/indel call merging, QC,
genotyping, and reassembly for 584 samples from
three sequencing centers. Nine replicated
samples were used to measure individual SV/
indel caller sensitivity via variant spike-in studies.
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most sensitive caller across all sizes and sequencing centers,
perhaps because it accounts for various sequencing characteristics
such as multiple insert-size libraries and soft-clipped reads (Xia
et al, 2016; Zhang et al, 2016). CNVnator and Breakdancer showed
worrisome sensitivity for all size ranges. Our results show that
sensitivity varies considerably among callers and for different size
ranges but is relatively insensitive to the sequencing site.

Specificity analysis

We assessed caller specificity using the D-score method (Methods:
D-score: a metric for evaluating SV/indel caller specificity in family
studies). LUMPY was the best-performing program with D-scores
between 5 and 10 for deletions from 30 to 10,000 bp (Fig 3). The
results were independent of the sequencing center. Scalpel also
yielded highly specific calls, particularly in the 200- to 1,000-bp
range with D-scores ranging from 5 to 8. The median D-scores for
deletion calls from SWAN, Pindel, and Breakdancer were between 3
and 5, but the results were dependent on the sequencing center.
Other programs yielded calls with lower specificity that were greatly
influenced by the sequence source. We also applied the kinship
coefficient to evaluate and calibrate the quality of deletion calls
and measure the impact of QC steps on call specificity (Fig 4A).
Before data cleaning, the kinship coefficient was much greater than
the expected value of 0.25 in siblings for events ranging from 21 to
350 bp, suggesting that that Scalpel is overcalling variants in this
size range. False positives often occur because of mapping issues
with the allele frequencies approaching 50%. This results in higher-
than-expected heterozygous genotypes under the Hardy–Weinberg
equilibrium. After removing deletions showing excess heterozy-
gosity, the kinship coefficient of the Scalpel genotypes approached
0.25 for all deletion sizes (Fig 4A). Comparison of kinship coefficient
metrics also showed that the quality of GATK Haplotype calls de-
creased as the deletion size increased and the coefficient was 0 for
deletions ≥50 bp (Fig 4B). In contrast, a kinship coefficient of 0.25
was maintained for Scalpel calls for deletion sizes between 20 and
400 bp, showing that the Scalpel calls are more reliable in this size
range. This work shows that the specificity of calls from different
programs varies depending on the size of the event detected and
can be influenced by the source of the sequence data.

Assessment of SV/indel caller computational requirements

We measured computational performance metrics for seven of the
eight callers used in this study (Methods: Computational perfor-
mance of SV/indel callers, Fig 5, Table S1). Scalpel was excluded
from performance benchmarking because of its extreme central
processing unit (CPU) demands and total runtime. To generate
these benchmark metrics, we processed 10 BAM files (mean size of
209.05 MB) from the ADSP’s discovery (disc) phase and 10 BAM files
(mean size of 54.58 MB) from the discovery extension (disc + ext)
phase. Among the tested callers, SWAN had the highest memory
demands and required more than 10 times greater runtime com-
pared with other programs. Breakdancer was the second longest
running SV caller evaluated. DELLY, Lumpy, GATK, and SWAN all had
similar CPU demands. Although Scalpel and SWAN ranked high in
terms of sensitivity and specificity, the runtime computational
requirements preclude the use of these programs on large
datasets.

Generating an ADSP deletion call set

All 584 samples were called in parallel via two independent pro-
duction pipelines, Scalpel + GenomeSTRiP and the Parliament

Table 2. Total calls by eight SV/indel callers.

Caller Number of calls

Breakdancer 3,484,082

CNVnator 2,572,070

DELLY 1,685,852

GATK Haplotype Caller 232,366

LUMPY 1,003,953

PINDEL 2,613,604

SWAN 1,945,009

Scalpel 1,441,659

Total 14,709,212

Number of pre-QC calls for all eight callers.

Table 1. Overview of SV/indel callers evaluated.

Caller Software version Sequence feature Calling range (bp) Exact genotype Precise breakpoint

Breakdancer 1.1 RP 1–10,000 Yes No

CNVnator 0.3 RD 200–10,000 No No

DELLY 0.5.6 RP and SR 15–10,000 Yes Partial

GATK HC 3.2 RP 2–300 Yes Yes

LUMPY 0.2.10 RP, SR, and RD 1–10,000 No No

PINDEL 0.2.5a3 RP and SR 1–10,000 Yes No

Scalpel 0.5.3 AS 1–1,000 Yes Yes

SWAN 0.3.0 RP, SR, and SC 1–10,000 No Partial

Column 1 provides the caller evaluated. The second column provides the software version used for each caller. “Sequence Feature” provides the method used
to determine events such as read-pair (RP), split-read (SR), read-depth (RD), soft-clip (SC), and local assembly (AS). Columns 5 and 6 provide whether each
caller supplies precise genotypes and breakpoints.
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Toolkit (Fig 1). Given that the sensitivity and quality of the GATK
Haplotype Caller dropped off significantly with deletions of size
greater than 20 bp, the pipelines focused on deletions greater than
that size range. Localized assembly and breakpoint refinement on
gapped alignments were performed with Scalpel to increase the
calling accuracy of deletions as large as ~900 bp. Of the 123,581
deletions detected by Scalpel and genotyped with GenomeSTRiP,
100,678 sites remained after the removal of deletions with excess
heterozygotes (N = 17,286), homozygous reference (N = 5,014), and
call rates less than 90% (N = 603). The number of deletions called
dropped off exponentially as the deletion size increased except for
a spike in the number of deletions related to Alu retrotransposons
(Fig 6). The frequency of these events peaked around 350 bp, which
corresponds to the lengths of most Alu transposons, and this size
distribution is expected and consistent with that observed in other
studies (Collins et al, 2020). The Parliament pipeline genotyped
more than 14 million SVs from the eight callers listed in Table 2. The

mean number of calls per program was slightly greater than 1.8
million. Because of computational requirements, the sites geno-
typed were limited to those greater than or equal to 100 bp. A total
of 32,122 calls remained post-QC, and the size distribution of these
calls shows the Alu peak at ~350 bp (Fig 7A and B). The distribution
of functional annotations of these variants is shown in Table 3. A
comparison of the deletion calls generated by the two pipelines in
the size ranges that overlapped (100–900 bp) identified 3,401 de-
letions (mean size = 330 bp, range 207–620 bp) that shared a base
location for at least one breakpoint (Fig S1) in the size bin with
deletions common to both callers.

Laboratory validation of deletion calls

To validate deletion calls, we performed Sanger sequencing on
putative deletions (Methods: Laboratory validation of deletion
calls). We sequenced 106 deletions called by Scalpel ranging in size

Figure 2. SV/indel caller sensitivity
stratified by sequencing center and caller.
Sensitivity rates were derived for all eight
callers using the in silico variant spike-in on
nine sample replicates. Sensitivity is
provided for all three centers (Baylor, Broad,
and WashU). Biological replicates are three
individuals in one family that were
sequenced at the three centers. Sensitivity
rates are provided across a large range of
event sizes (30 bp–10 kb). Sensitivity rates
are largely consistent across centers.
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from 2 to 900 bp (Tables 4 and S3). When smaller deletions were
randomly selected, 87.5% of events between 2 and 100 bp were
validated by Sanger sequencing (100% of the events under 20 bp
and 80% of events between 80 and 100 bp were confirmed by
Sanger sequencing). For loss-of-function deletions and those near
AD genes (±500 kb, Table S2) in this size range, slightly higher
validation rates were observed (average 93% and 95%, respec-
tively). For randomly selected large events (between 101 and
900 bp), the validation rate fell to 17%. This size range includes
several transposable elements (e.g., Alu) in the genome that are
susceptible to higher false-positive rates in SV calling across most
calling algorithms. Although Scalpel detected deletions up to
900 bp, we found the spiked-in sensitivity drops off at 500 bp (Fig 2)
as Scalpel’s window size was set to 600 bp. For many of the non-
validated deletions (Table 4), the sequencing did find an alternate
SV that was not a deletion (e.g., repetitive low complexity regions
[LCR], ALU insertion). However, when large SV/indel calls were

prescreened to remove deletion sequences found at multiple re-
gions of the genome, the validation rate increased to 50%. Deletions
near AD genes and LOF variants had a higher validation rate (83%
and 75%, respectively).

For Parliament pipeline calls, 20% of randomly selected dele-
tions in the 101- to 900-size range could be validated. For Parlia-
ment calls near AD genes and LOF variants, calls were validated at a
higher rate (33% and 83%, respectively). For larger SV calls, the
validation rate ranged from 73 to 83%. When we examined calls
made by both Parliament and Scalpel, all deletions tested (n = 11)
could be validated. The mean D-score for validated deletions (8.12,
sd = 10.98, n = 114) was significantly greater than the mean for
deletions that were not validated (2.52, sd = 4.98, n = 19, P = 0.0075).
This Sanger sequencing validation of deletions demonstrates that
the variants called by Scalpel, particularly within the 2- to 100-bp
size range, are highly reliable and are suitable for genetic asso-
ciation studies.

Figure 3. SV/indel caller specificity using
the D-score stratified by sequencing
center and caller.
Specificity rates are provided for all eight
callers from 30 bp to 10 kbp using our D-
score method. D-scores were calculated for
each of the three sequencing centers (Baylor,
Broad, and WashU). D-scores are quite
consistent across centers.
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Deletions within/near AD genes

To detect possible AD-associated pathogenic variants, we looked
for deletions in a ±500-kb window bracketing candidate AD genes,
focusing on deletions in gene functional units (coding regions, 59
and 39UTRs, promoters, and splice junctions). This window was
selected to capture genes regulated by cis-acting elements im-
pacted by peak GWAS variants that influence the expression of
causal AD genes. We identified deletions in the vicinity of 24 AD
candidate genes (Table S4) that could be validated by Sanger
sequencing. One pathogenic deletion identified using Scalpel was a
44-bp deletion in exon 14 of ABCA7 (rs142076058, p.Arg578 fs).
Subsequent work in a larger sample showed that the deletion was
associated with AD in African American populations (Cukier et al,
2016). For the remaining confirmed SVs, we tested the segregation

of the SVs in the families by requiring that at least 75% of the
patients with LOAD and WGS data in the families were carriers. We
found segregation in six SVs in at least one family near IQCK, FBXL7,
INPP5D, SPDYE3, and SERPINB1 (Table S5). A 21-bp coding deletion
was identified (rs527464858) in GIGYF2, a gene that encodes GRB10-
interacting GYF protein 2. This protein regulates tyrosine kinase
receptor signaling. The GIGYF2 deletion is in an imperfect “CAG”
repeat sequence and is ~270 kb from rs10933431, the top SNV for
INPP5D (P = 3.4 × 10−9, OR = 0.91, CI: 0.88–0.97) (Kunkle et al, 2019). This
deletion was observed in 46 cases and 3 controls in both NHW and
CH populations. Note that in our study, there were more cases (n =
498) than controls (n = 86) and some of these subjects are related
(n = 111 families). This deletion was observed in 10 CH and 13 NHW
families. Co-segregation showed that the variant segregated with
the AD status in three NHW families and one Hispanic family.

Figure 4. Kinship coefficient by deletion size.
(A) pre- and post-QC. Kinship coefficients for pre- (left) and post-QC (right) calls ranging from 20 to 400 bp were calculated for all sibling pairs. QC filtering to reduce
excess heterozygosity resulted in coefficients that approximated the expected value of 0.25. (B) Kinship coefficients for GATK Haplotype Caller with VQSR using the best
practices Mills indel training set (left) and GATK Haplotype Caller with an improved indel training set (right). Kiniship coefficient is 0.25 for SNVs called by the GATK
Haplotype Caller but declines progressively to 0 with increasing deletion sizes. In contrast, the coefficient approximated 0.25 for the GATK Haplotype calls across all SV/
indel bin sizes when using an improved training set for VQSR step that includes deletions across the range of sizes.
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A number of studies have found variants in GIGYF2 potentially
associated with an autosomal dominant form of Parkinson’s dis-
ease (Lautier et al, 2008; Ruiz-Martinez et al, 2015; Cristina et al,
2020), particularly in European populations but not in Asian cohorts

(Lautier et al, 2008; Ruiz-Martinez et al, 2015; Zhang et al, 2015;
Cristina et al, 2020). Although several SNVs in GIGYF2 may be as-
sociated with PD, most studies have not confirmed an association
between this gene and PD (Ruiz-Martinez et al, 2015), and a large
meta-analysis did not find that PD was associated with the poly-Q
region deletion described here (Zhang et al, 2015).

Discussion

We developed novel approaches for detecting deletions and
evaluating sensitivity, specificity, and validity. These methods
were applied to WGS data obtained from 578 participants of the
ADSP. We evaluated eight SV/indel callers on data generated at
three sequencing centers, each of which generated sequence
libraries using different protocols. Although sequencing library
heterogeneity did not appreciably influence results obtained with
most programs, call validity (deletion detection by an orthogonal
method) varied by size and calling program. Our results revealed
that no single calling program could reliably and accurately detect
deletions in all size ranges. Ultimately, we effectively detected and
genotyped deletions in the WGS dataset using a combination of SV
and indel callers, applying several QC filters, and validating calls
by Sanger sequencing.

Figure 5. Three performance metrics for
seven SV/indel callers.
top row provides the total runtime in hours,
the middle row provides peak central
processing unit percentage, and the bottom
row provides peak memory in gigabytes for 10
discovery phase (left column) and 10 discovery
extension phase (right column) samples.

Figure 6. Histogram of Scalpel deletions by size.
All Scalpel deletions (N = 123,581), ranging from 20 to 900 bp. The y-axis is
truncated at 2,000 calls. The Alu peak is seen near 350 bp.
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We evaluated the sensitivity of multiple SV/indel callers by
in silico insertion of deletions and insertions into ADSP biological
replicate sequence data. This simulation exercise suggests that
Scalpel has the highest sensitivity for deletions in the 30- to 500-bp
range. Scalpel’s sensitivity performance was closely matched by
Pindel and the GATK Haplotype Caller, but the latter only for smaller
events. Also, the specificity of calls made by Pindel was much less
than Scalpel because of the excess number of events called by this
program. We measured the specificity of the SV/indel programs
using the D-score, a measure that compares deletion sharing
between related and unrelated individuals, and the kinship coef-
ficient, which allows a comparison of the observed number of
deletion calls with the number of expected calls among individuals
with a defined degree of relationship. Scalpel and Lumpy showed
the best specificity across a broad size range from 30 to 1,000 bp
and were relatively insensitive to sequence library differences. In
contrast, the output from other callers was more sensitive to the
source of the sequence data.

We developed a comprehensive pipeline for calling, merging, QC,
genotyping, and the breakpoint refinement of deletions using

Scalpel and GenomeSTRiP (Fig 1). As expected, the most common
deletions were small and we observed an excess of deletions of
~350 bp in length, many of which are likely Alu repeat sequences
(Figs 5 and 6). For the size bin of 20–100 bp, Sanger sequencing
validated more than 87.5% of randomly selected deletions and
90.1% of all deletions (random, near AD genes, LOF variants)
(Table 4). This size bracket included 82,180 deletions and accounted
for 88.7% of all deletions detected by Scalpel (n = 92,659 total
deletions, Table S6). In addition, the Scalpel dataset had a kinship
coefficient near the expected value of 0.25 for siblings after the
removal of sites with excess heterozygosity.

Our study has several noteworthy strengths. First, we developed a
method for evaluating deletion specificity in family-based studies (D-
score). This allowed us to directly compare different methods of
deletion calling directly using study sequence data. Also, the D-score
can be used to prioritize SVs for targeted validation. Second, we
used the kinship coefficient metric as a method to measure the
overall quality of the call set genotypes and evaluate quality control
measures applied to family-based data. Third, we generated spiked-
in datasets that allowed for the evaluation of sensitivity in the

Figure 7. Histograms of Parliament deletion frequencies by size.
(A) Histogram of Parliament deletions (N = 32,122) ranging from 20 to 1,000 bp. (B) Full histogram of all Parliament calls (N = 32,122) ranging from 1 to 10,000 bp. The Alu
peak is seen at ~350 bp.

Table 3. SnpEff functional annotation categories for Scalpel and Parliament calls.

Functional annotation term Scalpel Parliament Parliament + Scalpel

Intergenic 59,595 15,238 1,900

Coding 51,849 14,724 28

Splice site 339 959 0

Intronic 492 151 1,475

59UTR 201 113 0

39UTR 739 201 0

Other 10,857 887 0

Totals 124,072 32,273 3,403

Breakdown of genomic functional annotation terms provided by SnpEff. There are slightly more annotation terms than loci as some loci overlap more than one
region.
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sequence data used in this study. Fourth, an orthogonal method
(Sanger sequencing) was used to validate candidate deletions and
to identify the characteristics of true calls. Fifth, the high-quality
deletion calls from Scalpel, particularly those under 100 bp, can be
used as a gold standard for comparison with calls from other
programs that are computationally less intensive. Sixth, we cataloged
deletion sites with precise breakpoints that can be directly geno-
typed inWGS CRAMs using other genotyping tools such as Graphtyper
and Paragraph. Last, we detected a deletion in ABCA7 that was
subsequently shown to be pathogenic. This illustrates the validity of
our approach to identifying AD-related deletions.

Our conclusions and recommendations for deletion calling have
some limitations. Although the D-score and kinship coefficient are
useful specificity measures, they require family-based data. Also,
because the D-score method relies on a comparison of the deletion

frequency in the general population (i.e., unrelated individuals)
versus related individuals, it does not perform well for deletions
that are very rare (less than 20 instances in a dataset) or very
common with allele frequencies approaching 50%. A minimum of
two SVs are needed to compute a D-score. In both cases, the
resulting D-score will be close to zero. Second, computational
requirements need to be considered. Scalpel, while yielding high-
quality calls, is not practical when applied to WGS datasets con-
taining more than a few thousand subjects because this program is
computationally intensive. However, the Scalpel calls generated
here can be used as a benchmark for evaluating the sensitivity and
specificity of other programs such as more recent versions of GATK
Haplotype Caller (unpublished data). The utility of callers with
longer runtimes can be improved by splitting larger chromosomes
and processing them in parallel. However, the cost of using some

Table 4. Deletion validation results.

Selection method Workflow Size bin (bp) Sequenceda Validatedb Failedc Alternate
eventd

No PCR
producte

Percent
validated

Near AD genesf
Scalpel

20–50 12 11 0 1 1 92%

90%51–100 3 3 0 0 0 100%

101–800 6 5 1 0 0 83%

Parliament
101–900 6 2 1 3 0 33%

59%
1,001–17,000 11 8 3 — 0 73%

SnpEff LOF

Scalpel

20–50 13 13 0 0 0 100%

90%51–100 3 2 1 0 0 67%

101–400 4 3 1 0 1 75%

Parliament

100–200 3 2 1 — — 67%

83%201–400 6 6 — — 1 100%

501–900 3 2 1 — 1 67%

Anywhere in the
genome

Scalpel

2–19 11 11 0 0 2 100%

78%

20–40 6 5 0 1 1 83%

41–60 6 5 1 0 2 83%

61–80 7 6 1 0 2 86%

81–100 10 8 1 1 1 80%

101–900 6 1 3 2 0 17%

Parliament
101–900 5 1 1 3 4 20%

55%
900–1,000 6 5 1 0 1 83%

Cleanedg Scalpel 101–900
(Cleaned) 8 4 2 2 0 50% 50%

In commonh Scalpel and
Parliament 101–900 11 11 0 0 0 100% 100%

Totalsi 146 114 19 13 17 78%
a“Sequenced” are deletions where PCR products were produced that could be sequenced.
b“Validated” is the number of deletions where Sanger sequencing yielded the predicted deletion.
c“Failed” is the number of confirmed false-positive calls.
d“Alternate Events” indicates that a deletion other than the predicted event was observed.
e“No PCR Product” is the number of events that could not be amplified and thus could not be tested.
fThe AD gene list used is in Table S2. Deletions tested were within ±500-kb bp of the target gene.
g“Cleaned” indicates that the BLAT was used to exclude events that mapped to multiple places in the genome.
h“In common” was randomly selected from a list of identical deletions called by both the Scalpel and Parliament pipelines.
i“Totals”—for total Scalpel and Parliament, calls “in common” events were included in the final total for each pipeline.
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programs such as Scalpel and SWAN may be prohibitive when
applied to datasets much larger than the one used in this study.
Another limitation of our study is that for associations of deletions
with AD, our study is underpowered. Thus, we can nominate de-
letions as candidate pathogenic variants (e.g., Table S4) but will
need larger follow-up studies to confirm true associations (e.g., the
ABCA7 deletion). Finally, we only evaluated deletions in this study
because of the poor performance of the callers used to detecting
insertions and other types of events. Future studies will use other
programs that better detect insertions, rearrangements, and copy-
number changes.

Findings from this study have multiple, important implications.
Small deletions represent a substantial portion of genetic variation
(1000 Genomes Project Consortium et al, 2015; Collins et al, 2020).
Larger deletions are rarer and account for a small fraction of total
genetic variability but are more likely to be deleterious because they
may alter large portions of one or more genes. Given the challenges
of accurate SV/indel detection and genotyping, SV/indels larger than
a few base pairs are typically not included in genetic association
studies. Accurately called and genotyped indels/SVs can increase the
scope of both hypothesis-driven and genome-wide association
studies. Moreover, similar to SNVs, SV/indels in the context of a large
WGS or WES dataset can be imputed reliably into GWAS datasets
derived from SNP arrays. Studies of SV/indels in the future will likely
increase and improve our understanding of the genetic architecture
ofmany diseases asmore reliable and efficient calling algorithms are
developed and validated.

Materials and Methods

Subjects and generation of WGS data

WGS data were obtained from the ADSP, a collaboration between the
National Institute on Aging (NIA), the National Human Genome
Research Institute (NHGRI), and the Alzheimer’s disease research
community (Beecham et al, 2017). Details of subject selection and
WGS data generation and processing are described elsewhere
(Beecham et al, 2017; Leung et al, 2019). In brief, the sample included
498 AD cases and 84 cognitively normal elderly controls from 44 non-
Hispanic Caucasian and 67 Caribbean Hispanic families. All studies
involved were approved by their respective University Institutional
Review Boards (IRBs), and the overall study was approved by the
University of Pennsylvania IRB. WGS data were generated using
Illumina’s 2500 HiSeq platform by the NHGRI’s LSACs at the Baylor
College ofMedicine (BCM), the Broad Institute (BI), and theMcDonnell
Genome Institute at Washington University (WashU). BCM provided
166 samples with a mean template size of 370 bp (SD = 12.4 bp). For
the BI, 232 samples were sequenced with a mean template size of
335 bp (SD = 1.4 bp). WU provided 186 samples with three library
preparations targeted at insert sizes of 200, 400, and 550 bp. These
three library sizes were chosen to increase SV calling accuracy by
incorporating longer reads; however, there was considerable size
heterogeneity in the 550-bp read group. Three samples from one
family were sequenced at all three LSACs as triplicates for evaluating
and adjusting for center-specific sequencing effects.

Deletion variant calling protocol

Two complementary pipelines for deletion calling, merging, gen-
otyping, and reassembly were implemented (Fig 1). In one approach,
each genome was divided into 47 regions (two regions per auto-
some and one each for X, Y, and mitochondrial chromosomes)
excluding telomeres and centromeres and called in parallel using
Scalpel (Narzisi et al, 2014) to reduce processing time across the
entire genome. Scalpel reassembles gapped alignments using the
de Bruijn graph method to increase calling specificity in regions
characterized by complex repeat structures. Scalpel was also used
to generate precise breakpoints via local assembly within a 1,000-
bp capture window for the whole genome. GenomeSTRiP (McCarroll
et al, 2006) was used to perform joint genotyping and provide
missing genotype information to further refine calls. The second
deletion calling pipeline was based on Parliament (English et al,
2015), which created a unified project-level variant call file by
combining and filtering calls based on consensus and quality
metrics from eight indel/SV callers including Scalpel (Table 1).
Parliament also provided gene annotation, genotyping, and local
hybrid assembly. Because Parliament’s breakpoint detection pro-
cess is computationally intensive, we limited the analysis to
deletions >100 bp. The functional annotation of each variant was
determined using SnpEff (Cingolani et al, 2012).

Sensitivity analysis using simulated spike-in data

We evaluated sensitivity by “spiking-in” SV/indels using BAMSur-
geon (Ewing et al, 2015) into triplicated samples (three samples
sequenced at all three LSACs). First, we generated a list of pre-
defined SV/indels, including 4,040 deletions and insertions, and
1,560 inversions and tandem duplications, totaling 11,200 events.
SV/indels ranged in size from 2 to 5,000 bp and were spiked into all
autosomes for the three sample replicates (nine files in total). Half
of the spike-in events were inserted as heterozygotes and half as
homozygotes. BAMSurgeon failed to add in a small fraction (2.92%)
of the attempted spike-in events, and those sites were excluded
from sensitivity analysis. For sites where BAMSurgeon succeeded,
there were minor discrepancies in the exact breakpoints of the
actual spike-in location as compared to its targeted location. These
minor breakpoint discrepancies did not affect the results because
we applied a 50% reciprocal overlap for detecting spiked-in events.
Finally, SV/indels were called for the nine spiked-in samples to
measure the sensitivity of each caller across the full range of sizes.
Because the true events were known or spiked-in, the sensitivity
(Equation (1)) of each SV/indel caller was estimated as follows:

Sensitivity = #of Detected Events
# of True Events (1)

D-score: a metric for evaluating SV/indel caller specificity in
family studies

To ascertain the specificity of deletion calls, we developed the
following family-based metric called the deletion or D-score. It
represents the log-likelihood ratio of the probability of sharing a
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variant by siblings assuming that (a) the variant is true and (b) the
variant is a false call. The variant sharing probabilities among
siblings depend on the caller sensitivity.

DðVÞ = log
P1

�
f sib < f

observed
sib

�

P0

�
f sib > f

observed
sib

� (2)

f = overall call rate (proportion of samples where a call is made).
fsib = P1ðcall jcall in sibÞ, for a true variant.
For reproducible false calls, E0½f observedsib � = f = population call rate.
For true variants, E1½f observedsib � = fsib .
βHET, βHOM = the sensitivity of the caller for heterozygous and

homozygous variants, specific to each caller and each library design
for the sequencing sites. Caller sensitivity vectors were calculated
from the spike-in study results.

fsib = Fðf ;βHET ;βHOMÞ (3)

Thus, given βHET and βHOM (which can be estimated from the
spike-in data), we can compute fsib.

True variants have higher sharing across sibs.

f observedsib ~Binomial
�
nsib−pairs; fsib

�
(4)

However, false calls are random across samples.

f observedsib ~Binomial
�
nsib−pairs; f

�
(5)

For true calls, f (unrelated sharing frequency) is smaller than fsib
(sharing frequency among siblings), resulting in larger positive
values of the D-score. The D-score metric does not require ge-
notype information and therefore can be used to evaluate caller
specificity in the absence of genotyped calls.

Kinship coefficient

To assess overall call set quality, a kinship coefficient was calcu-
lated using KING (Manichaikul et al, 2010) for all sibling pairs with
genotype information of SVs/indels. Because a kinship coefficient
of 0.25 is expected for the pooled set of heterozygous joint-
genotyped calls, departure from this value indicates systematic
errors in SV/indel calling. Because multigenerational data are
usually not available in family studies of AD, the kinship coefficient
has greater utility than a check for Mendelian inconsistencies and is
useful for measuring the overall quality of the genotypes.

Quality control

Many false positives are the result of poor mapping quality between
two or more sites and are characterized by excess heterozygosity.
Therefore, a Hardy–Weinberg equilibrium P-value threshold of
5 × 10−8 was applied to filter calls with excess heterozygosity. The
BLAST-like Alignment Tool (BLAT) (Kent, 2002) was used to filter
deletions with a low predictedmapping quality or that map tomany
sites (N > 100) in the genome. Finally, deletions with an alternate
allele count of less than five were removed from the final call set.

Parliament’s consensus and QC strategy proved to be useful in
improving call quality by combining call set metrics and applying
heuristics to reduce false positives.

Computational performance of SV/indel callers

Computational performance benchmarks were obtained for the
eight SV/indel programs based on the analysis of 20 randomly
selected subjects. Performance benchmarks were derived using
automated scripts and included total runtime, peak CPU usage,
peak memory usage, and processing core hours. All data were
processed using an © Amazon’s Elastic Cloud 2 (EC2) extra-large
instance with © Intel © Xeon 2.4 GHz CPUs. Scalpel benchmarking
results were excluded from this analysis because of its extreme
computational demands for processing WGS data.

Laboratory validation of deletion calls

Subsets of Scalpel- and Parliament-derived deletions of different
sizes were selected for validation based on three methods: ran-
domly selected events within specified size bins, predicted LOF, and
proximity to 74 candidate AD loci with strong genome-wide asso-
ciation signals. These candidate AD loci were curated from GWAS,
candidate gene studies, and multiple family-based studies (Goate
et al, 1991; Corder et al, 1993; Levy-Lahad et al, 1995; Sherrington et al,
1995; Patel & David, 1997; Lambert et al, 2013a, 2013b; Cruchaga et al,
2013; Beecham et al, 2014; Escott-Price et al, 2014; Jun et al, 2014,
2016, 2017; Logue et al, 2014; Ruiz et al, 2014; Wetzel-Smith et al, 2014;
Steinberg et al, 2015; Tosto et al, 2015; Herold et al, 2016; Jakobsdottir
et al, 2016; Kohli et al, 2016; Deming et al, 2017; Mez et al, 2017; Sims
et al, 2017; Marioni et al, 2018; Zhou et al, 2018; Baker et al, 2019;
Jansen et al, 2019; Kunkle et al, 2019; Zhang et al, 2019; Bis et al, 2020).
Validation was performed by PCR across the deletion with custom-
designed primers followed by Sanger sequencing. For validation, we
tested three SV carriers and one non-carrier for each SV. For the
Scalpel-derived deletions, the variants were binned by base pair
length (2–19, 20–40, 41–60, 61–80, 81–100, and 101–900 bp). The size
ranges examined for the Parliament-derived deletions were
101–900, 901–1,000, and 1,001–17,000 bp. The BLAT from the Uni-
versity of California, Santa Cruz Genome Browser (Kent 2002) was
used to search and align variant sequences and surrounding se-
quences to the human reference genome. Because the BLAT had a
minimum requirement of 20 bp, sequences smaller than 20 bp were
queried by adding flanking sequences upstream and downstream
of the test sequence to bring the length up to 20 bp. Both University
of California, Santa Cruz HG19 and HG38 reference genomes were
queried using the BLAT. In addition, for each deletion, 100-bp
sequences flanking the either side of the event were also queried
against the BLAT as a contiguous 200-bp sequence (i.e., variant
deletion sequence removed). The BLAT alignment allowed for the
visualization of the deletion and surrounding sequence in terms of
proximity to genes and repeat sequence and facilitated the
identification of instances of clear mis-mapping. The sequence
surrounding the variants was extracted from HG38 and used for
primer design. For variants where a PCR product of ≤1,200 bp was
expected (including the variant sequence), primers were designed
outside of the breakpoints to amplify across the deletion sequence.
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For deletions where the reference allele was too large to be am-
plified by a 1,200-bp PCR product, a double PCR approach was used.
For the first PCR, one primer was designed within the putative
deletion sequence, whereas the other primer was placed external
to the deletion breakpoint. The samples containing the reference
allele and not containing a deletion would yield a product with this
PCR. For the second PCR, both primers flanked the putative dele-
tion. Only samples, which contained the deletion, would yield a
product for this PCR. The samples from the three individuals re-
ported as heterozygous or homozygous deletions were used for
sequence validation, as well as the one control (or reference)
sample. When possible, samples from multiple families were used
for validation.

Data Access

BAM files and variant calls on build hg38 of the human genome
from the Alzheimer’s Disease Sequencing Project (ADSP) are
available through the NIA Genetics of Alzheimer’s Disease Data
Storage Site (NIAGADS), dataset NG00067. ADSP sequencing data
aligned to human genome reference hg37 are available through
dbGaP (Accession number: phs000572.v8.p4).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302181
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